
P
ro

Q
u

al
it

y

1

от кода
до прода
за 1 час

https://pmakhakhei.github.io/



P
ro

Q
u

al
it

y

2

Павел Махахей

• 2008 года в ЕПАМ

• занимался автоматизацией тестирования 
на .NET, Java, JavaScript

• консультант в центре компетенций по 
тестированию

https://pmakhakhei.github.io/



P
ro

Q
u

al
it

y

3

WHY CONTINUOUS TESTING?

SYRVEY INTRODUCTION

SUMMARY ON CONTINUOUS TESTING MATURITY

KEY TECHNOLOGY LANDSPACE

TEST PROCESS MATURITY

CONTINUOUS DEPLOYMENT & DELIVERY

TEST AUTOMATION LANDSCAPE

Agenda
https://pmakhakhei.github.io/



P
ro

Q
u

al
it

y

4

Трансформация тестирования

Тестирование не генерирует business 
value

Фаза тестирования – вынужденная 
активность на пути к продакшену

Тестирование исключено из процесса 
разработки и отдано на аутсорсинг

Quality at Speed

Continuous Improvement

Rapid Delivery

https://pmakhakhei.github.io/



P
ro

Q
u

al
it

y

5

585
RESPONDENTS

377
PROJECTS

167
CUSTOMERS

57
REGIONS

Overview
Survey Introduction

https://pmakhakhei.github.io/



P
ro

Q
u

al
it

y

6

0.2%

0.2%

0.2%

0.3%

0.3%

0.3%

0.3%

0.5%

0.5%

0.5%

0.5%

0.5%

0.7%

1.2%

1.2%

1.5%

2.7%

6.2%

10.8%

20.5%

24.8%

26.0%

Czech Republic

Lithuania

Netherlands

Armenia

Canada

Slovakia

Viet Nam

Bulgaria

China

Kazakhstan

Romania

Singapore

USA

Spain

Switzerland

Mexico

India

Hungary

Poland

Ukraine

Russia

Belarus

By Location

1.5%

1.9%

14.5%

36.2%

45.8%

Project Manager / Delivery Manager

Performance Analyst

Testing Team Lead / QA Manager

Test Engineer

Test Automation Engineer / SDET

By Project Role

0.7%4.4%7.2%12.1%

32.3%
43.3%

OtherB1+A1A4A3A2

By Level

5.3%

1.2%

1.9%

1.9%

6.3%

7.7%

11.1%

21.2%

43.4%

Other

SET.Java

Automated Testing in Python

Performance Testing

Automated Testing in JS

Automated Testing in .NET

Automated Testing

Automated Testing in Java

Functional Testing

By Primary Skill

Survey Introduction
Respondents Summary

https://pmakhakhei.github.io/



P
ro

Q
u

al
it

y

7

32.6%

19.1%

16.7%

10.3%

6.4%

6.1%

5.3%

5.0%

2.7%

2.1%

1.9%

4.2%

Finance

Retail & Distribution

Software & Hi-Tech

Lifescience & Healthcare

Media & Entertainment

Legal

Publishing & Business Information

Insurance

Business Information & Media

Travel & Hospitality

Oil & Gas

Other

Represented Domains by Project Distinct Count

377
PROJECTS

167
CUSTOMERS

17
DOMAINS

Total Distinct Count

Survey Introduction
Projects and Customers

https://pmakhakhei.github.io/



P
ro

Q
u

al
it

y

8

UNICORNS: 2%
Top performers which can release features to Pre-Production or Production instance within 1 hour and
typically have high Unit test coverage >80%, high test automation coverage >80%, heavy focus on non-UI
tests >50% and fast feedback on test results < 1 hour. Serverless architecture is distinctive for this segment.

HIGH PERFORMERS: 6%
Projects which can release features to Pre-Production or Production instance within 1 day are typically
represented by Cloud-Native applications with Microservices-based architecture. They are mainly
characterized by mature test pyramid with > 80% API tests and high level of test automation maturity.

TRANSITIONING PROJECTS: 11%
This segment is represented by projects which can deliver to Pre-Production or Production instance within
1 week. Analysis shows that test automation level is close to high performers with > 90% pass ratio
however the differentiator is much longer duration of automated suite: around 8 hours and higher level of
GUI tests > 50%.

AVERAGE PERFORMERS: 27%
Projects which deliver new functionality within 1 month and mostly having purely manual testing activities.
Typically, tightly-coupled architecture is used often based on legacy technologies. If test automation exists,
the maturity is not high with low level of automation coverage, large number of tests and disbalanced test
pyramid.

LOWER PERFORMERS: 12%
Projects with full validation cycle for new features longer than 1 month and typically having low functional
automation coverage < 50%, low Unit test coverage < 50%, unstable tests with pass ratio < 50%, high
number of functional tests > 5000 and test run time much longer than 8 hours.

Not Defined

Low Performers

Average Performers

Transitioning Projects

High Performers

Unicorns

Projects Segments

Summary on Continuous Testing Maturity
Project Segments

https://pmakhakhei.github.io/



P
ro

Q
u

al
it

y

9

More than a third of projects deliver new features within 1 week

The percentage of projects adopting mature Test Automation and DevOps practices
and capable to deliver features at least weekly is 38.2% and the percentage is roughly
stable YOY. Analysis also shows 9.8% projects can deliver changes daily and 2.65% -
hourly.

38% 14% 6% 23% 43%

Time required for new build validation and deployment

less than 1 week 1 week - 1 month more than 1 month no information N/A

13% projects have Continuous Deployment up to Pre-Production

Analysis of distinct projects shows 13% projects have fully automated CI/CD pipeline
and can deploy up to staging or pre-production environment and 4.5% can deploy
automatically straight to production instance after all defined quality gates passed.

Non-Functional quality gates are influencers on Continuous Testing 
maturity

While functional tests serve as quality gates on many projects, analysis shows non-
functional quality gates impact continuous deployment to Pre-Production and
Production instances the most. When security and performance tests are quality
gates in pipeline, the chance of continuous delivery increases by 1.4 and 1.57 times.

59.7% 33.7% 13.0% 4.5%

TESTING INTEGRATION STAGE PROD

Cloud technologies highly facilitate Continuous Testing adoption

When Cloud-Native technologies are used, the probability of project maturity is 116x
more likely to be High Performer. Serverless and Microservices architecture have
comparable influence on high level of continuous testing maturity.

> 80% test 
automation 

coverage

51.19x 
probability of 

delivering 
hourly

> 90% 
Pass Ratio

331.00x
probability of 

delivering 
hourly

100% 
projects 

which deliver 
hourly

Run time <1h
Automated run duration is crucial factor for high maturity projects

Analysis shows that the key differentiator for projects with comparable test
automation maturity capable of delivering features within 1 day is test automation
run duration which is less than 1 hour. Other typical factors are high test automation
coverage and high average pass ratio of automated tests.

27% cloud-
native 

development

116.1x 
probability of 
high maturity

Quality Gates %, Production Quality Gates %, Pre-Production

Cloud-Native 
development: 
64% of high 
performers

Security tests Performance tests

Serverless & 
Microservices: 

x15.7 of average 
probability

Non-functional tests in CI/CD %, daily deployments

Performance and Security 
tests impacts probability of 
daily deployments the most

Key Insights
Higher Performers

https://pmakhakhei.github.io/



P
ro

Q
u

al
it

y

10

23% of projects have full validation cycle for new features 1+ month long

Projects which can deliver features within several months typically have increased number of
functional tests in comparison with others and immature or inefficient test automation practices.
Typical segment representing such projects show they have more than 5000 automated tests
though low automation coverage < 50%.

Ineffective test automation impacts delivery worse than pure manual
activities
Analysis shows that no automation adopted on the project increases probability of delayed
releases (1 month or more) less than unbalanced test pyramid, low pass ratio (<50%) and long
running tests which increased risk of late delivery by 7, 53 and 4 times correspondingly.

Outdated technologies for automation may influence speed of delivery
As an example, when Visual Basic language was used for implementation of automated tests, the
risk of having low maturity in Continuous Testing increased by 21 times. This might be caused by
implicit factors related to execution environment or run time.

Legacy architecture and lack of Cloud technologies is typical for low
performers
When Cloud technologies are not used, the probability of delayed delivery is increased by more
than 6 times. Most often the architecture of system under test for low performing segment is
Service-Oriented architecture, N-Layered architecture or Monolithic.

Large number of tests with low pass ratio is key impediment for fast feedback
Key factors which have impact on low continuous testing maturity include high number of tests >
5000 and low pass ratio < 50%. Analysis shows that projects with ineffective test automation
which requires increased effort for maintaining, execution and analysis in parallel with manual
testing activities slows down delivery the most.

What influences the probability of being Low Performer the most

when… …the likelihood of project being low performer increased by

functional test automation 
level < 50% 76.37x

pass ratio for automation 
runs < 50% 53.22x

programming language for 
automation is Visual Basic 21.04x

Unit test coverage
< 50%

18.53x

number of functional 
automated tests

> 5000
13.00x

Cloud technologies
are not used 6.59x

Key Insights
Lower Performers

https://pmakhakhei.github.io/



P
ro

Q
u

al
it

y

11

32%

27%

24%

17%

Usage of Cloud Technologies

Cloud is partially used

Cloud-Native development

Cloud is not used

Cloud migration

Serverless & Microservices 
architecture is a trend

Analysis of technologies and architecture
styles used across projects shows the
trend for increasing adoption of loosely
coupled architecture: Microservices and
Serverless architecture styles prevail over
others and percentage of projects using
them increased from 35% in 2020 to 43%
in 2021 while percentage of Monolithic
architecture decreased from 18% to 10%.

Cloud adoption has greatest 
influence on architecture style

The probability of using Service-Oriented,
Microservices or Serverless architecture
increases the most when Cloud-native
development is used or at least part of
functionality is related to Cloud. From
other side, when the project was
migrating to Cloud, the probability of
architecture being Monolithic increased
by 6.31 times.

43.0%

30.0%

13.8%

10.1%

7.7%

4.0%

20.2%

Serverless & Microservices

Service-Oriented architecture

Mixed

Monolithic

Layered architecture (N-tier)

Single-Page applications

Other

Architecture Style Used on Project

7%

13%

8%

Serverless or Microservices and Cloud

Technology Landscape
Architecture & Cloud

https://pmakhakhei.github.io/



P
ro

Q
u

al
it

y

12

Non-functional tests have lower 
automation level

Average level of integration in CI/CD for non-
functional tests is 36% while it is 52% for
functional tests. Though level of automation
for performance tests is 10% higher than in
2020. Part of projects integrating security
tests in pipeline remains at 9% level and still
low while analysis shows both performance
and security tests have crucial impact on
capabilities of continuous delivery.

Functional test automation level 
remains stable

Level of integration of functional tests into
pipeline and automation health remains
relatively stable with highest percentage for
BVT, Smoke and Regression tests and close
to average numbers in 2020 with minimal
fluctuations. Analysis shows that low
automation level often depends on
architecture style with lower automation
level for Monolithic applications.
Traditionally, automation coverage is lower
for IoT and Telecom domains.

72%

have smoke 
test in pipeline

69%

have 
regression 

tests in pipeline

27%

have 
performance

tests in pipeline

9%

have security
tests in pipeline

10%

30%

have Unit test 
coverage > 80%

27%

have functional 
test coverage > 

80%

54%

have pass 
ratio > 
90%

1%

31%

have > 80% 
tests on non-UI 

level

1%2%

Automation level by projects %

Automation health by projects %

Test Process Maturity
Summary by Projects

https://pmakhakhei.github.io/



P
ro

Q
u

al
it

y

13

14%

18%

21%

25%

30%

27% 19%

57%

36%

Unit test coverage

Functional test coverage

Distribution of Projects by Automation Coverage

less than 50% from 50% to 80% more than 80% No automated tests No information

12.1%

29.6%

31.8%

68.5%

72.4%

96.1%

23.0%

34.7%

37.6%

41.2%

44.1%

Exploratory Test

Acceptance Test

New Feature Test

Regression Test

Smoke/Sanity Test

Build Verification Test

Usability Tests

Security or Penetration Tests

Accessibility Tests

Disaster Recovery Tests

Performance Tests

F
u

n
ct

io
n

a
l

N
o

n
-f

u
n

ct
io

n
a

l

Level of Integration into Pipeline by Projects %

59.20%

59.20%

78.50%

94.20%

88.30%

47.20%

30.00%

26.00%

22.60%

4.50%

60.50%

7.20%

17.50%

24.90%

64.50%

63.90%

45.40%

6.90%

9.00%

8.50%

1.90%

26.50%

Exploratory Test

Acceptance Test

New Feature Test

Regression Test

Smoke/Sanity Test

Build Verification Test

Usability Tests

Security or Penetration Tests

Accessibility Tests

Disaster Recovery Tests

Performance Tests

F
u

n
ct

io
n

a
l

N
o

n
-f

u
n

ct
io

n
a

l

Test Types Executed by Projects %

Integrated in CI/CD Performed

Test Process Maturity
Automation Level

https://pmakhakhei.github.io/



P
ro

Q
u

al
it

y

14

Pass Ratio and Run Time are direct influencers on
delivery

Typical segment with high delivery speed includes projects with pass
ratio > 90% and execution time < 1 hour. When average Pass Ratio was
> 90% the probability of delivery within 1 hour increased by 282 times.
And vice versa: the probability of late delivery increased the most
when Pass Ratio was < 50%.

Test pyramid impacts automation stability the most

Percentage of non-UI tests had the greatest influence on average Pass
Ratio. When percentage of non-UI tests was < 50% the probability of
low Pass Ratio < 50% increased by 156 times. While the probability of
Pass Ratio being > 90% increased the most when more than a half of
tests were implemented on API level.

Duration of automated run is not in direct ratio to test
count

Though test run time correlates with the number of tests, it is not in
direct proportion to it. When percentage of non-UI tests was higher
80% the probability of run time to be < 1 hour increased by 5 times.
Time required for test execution can significantly decrease depending
on test levels and test execution platform used.

Pass Ratio and run duration are also interdependent

Analysis shows that the longer tests are running the more probability
of lower Pass Ratio. Highest stability of automated tests is typical for
project with large number of tests though fast execution: < 1 hour.

53.6%

30.8%

7.8%

2.5%

26.5%

more than 90%

70% - 90%

50% - 70%

less than 50%

no information

Test Automation Pass Ratio

30.6%

21.9%

36.0%

36.0%

high (> 80%)

medium (50% - 80%)

low (< 50%)

no information

Focus on Non-UI Tests

12.1%

25.4%

36.8%

24.2%

26.6%

more than 5000

1000 - 5000

100 - 1000

less than 100

no information

Automated Tests Count

13.1%

43.4%

37.2%

26.3%

more than 8 hours

1 - 8 hours

less than 1 hour

no information

Automated Run Duration

Test Process
Automation Health

https://pmakhakhei.github.io/



P
ro

Q
u

al
it

y

15

20.7%

26.0%

8.5%

4.5%

25.7%

Integration / Development

environment

Testing environment

Staging or Pre-production

environment

Production environment

No information

Ultimate Environment

2.7%

9.8%

29.4%

14.3%

6.4%

23.1%

up to 1 hour

up to 1 day

up to 1 week

up to 1 month

more than 1 month

no information

Full Validation Cycle of Build

47.3%

38.0% 37.2% 35.9%
31.9%

16.0%

6.9%
2.4%

Unit tests Build

verification

tests / Health

check

Static Code

Analysis

Smoke test Regression

test

Security

Scanning

Performance

test

No

information

Quality Gates Applied on Projects

38%
can promote new 
feature within 1 

week

37%
have static code 
analysis as QG in 

pipeline

36%
have smoke test as 

QG in pipeline

1%

1%

32%
have regression

tests as QG in 
pipeline

7%

70%
have automated 

process of 
deployment

63%
have centralized 

reporting system

4% 1%

Continuous Deployment & Delivery
Summary by Projects

https://pmakhakhei.github.io/



P
ro

Q
u

al
it

y

16

Selenium is still most popular tool but not influencer on 
maturity

The share of Selenium is still very high: > 60% of distinct projects
reported they use it for UI automation. However, Selenium is not
differentiator for project with highest continuous testing maturity.
Cypress, Webdriver.IO and Playwright are relatively new players on
the market but are the tools of choice for higher performers.

Cloud execution platforms are differentiators for top 
performers

Sauce Labs, LambdaTest, Microsoft Azure, AWS are used with higher
probability for top projects capable of delivery within 1 hour. While high
performers tend to use Kubernetes, Docker, AWS as platform for
continuous test execution.

Execution platforms for high performers Automation tools for high performers

Test Automation Landscape
Languages and Tools

https://pmakhakhei.github.io/



P
ro

Q
u

al
it

y

17

JavaScript breaks into 2nd place

JavaScript solely hits the second place in popularity after Java with
6% growth comparing to 2020-year results. Together with
TypeScript, the percentage of engineers using one of language or
both is close to 35%.

Python and C# popularity grows moderately

C# for test automation is used on approximately 19% of distinct
projects and this is 3% higher than in 2020. Python increased its
share from 8% in 2020 to 9.5% in 2021.

Niche languages popularity remains unchanged

Kotlin, Scala, Ruby, Golang all together have less than 10%. Their
popularity did not change from 2020 with only minor fluctuations
within only tenths of a percent.

Codeless automation steadily grows year to year

There is no rapid change in Codeless automation level but the
percentage of scriptless automation has stable increase from
2019 to 2021. Almost 8% of project claim they use codeless
automation and around 5% of all respondents mention they do
not use any programming language to develop scripts.

High Performers focus on niche program languages

While C# and JavaScript are languages of choice for unicorn
projects, the hallmark of high performers projects is focusing on
Scala, Kotlin, Ruby or Python.

50.7%

23.5%

18.9%

10.9%

9.5%

6.0%

5.4%

2.4%

1.6%

1.4%

4.2%

1.6%

55.6%

27.6%

18.9%

13.7%

11.5%

7.8%

7.5%

2.2%

2.2%

2.2%

5.9%

2.2%

Java

JavaScript

C#

TypeScript

Python

Groovy

Codeless

automation

Kotlin

Scala

Ruby

No information

Other

Programming Languages for Automation

By People By Projects

8%

6%

3%

2%

Test Automation Landscape
Programming Languages

https://pmakhakhei.github.io/



P
ro

Q
u

al
it

y

18

Accelerators are used

34.8%

Accelerators are not used

65.2%

Usage of EPAM AcceleratorsEPAM Mobile Cloud and Report Portal are most adopted 
accelerators

Together they are used on more than a third of all projects while
Report Portal has higher adoption: 24% vs 8% for Mobile Cloud.
However, the share of EPAM Mobile Cloud across unicorn and
high performing projects is higher than share of Report Portal
or other accelerators. When projects are capable to deliver
within 1 hour, the probability of using either EPAM Mobile
Cloud or Report Portal increase by 4.2x and 1.7x of average.

2%

13% 13%

1%

24.4%

8.0%

2.9%

2.4%

0.8%

0.8%

ReportPortal

EPAM Mobile Cloud

Vividus

JDI

Carrier

Drill4J

Accelerators Usage by Projects %

The probability of using 
EPAM Mobile Cloud

The probability of using 
EPAM Report Portal

Test Automation Landscape
EPAM Accelerators

https://pmakhakhei.github.io/



P
ro

Q
u

al
it

y

19

28.4%

27.2%

26.9%

18.5%

18.5%

12.7%

8.6%

7.7%

5.6%

4.9%

3.1%

2.8%

2.2%

1.9%

7.8%

Virtual Machines

Docker

AWS

Microsoft Azure

Physical Machines

Kubernetes/Swarm/Marathon

Selenoid

SauceLabs

BrowserStack

Google cloud

CrossBrowserTesting

EPAM Mobile Cloud

Visual Studio App Center

Moon

Others

Test Execution Platforms

37.1%

13.0%

7.7%

4.8%

2.9%

1.6%

1.3%

1.1%

3.5%

43.2%

Jenkins

Azure DevOps

GitLab

TeamCity

Bamboo

AWS CodeBuild

No information

Concourse CI

Others

No CI/CD

CI/CD tools used

22.9%

22.9%

19.5%

13.1%

7.6%

2.5%

28.4%

Allure

EPAM ReportPortal

Dashboard in CI/CD tool

Custom generated reports

Embedded reporting

ExtentReports

Other

Reporting Tools Used

Test Automation Landscape
Execution & Reporting

https://pmakhakhei.github.io/


